摘要: 原创博客:转载请标明出处:http://www.cnblogs.com/zxouxuewei/
各位博友好长时间又没有写博客了,突然发现上班和在学校是不一样的,在公司的却没有时间写博客了,不过还有好多小伙伴会遇到不一样的问题,今天我在总结的同时,将遇到的问题也汇集一下:
一。首先统一硬件:
1>不过对于ros软件平台下的机器人底盘来说,没有什么是统一的,标准的,只有完成ros层的参数透传和执行就可以了。不过今天我所用的硬件不是我之前博客中提到的两轮差分的。 而是3轮全向的,具体是3个时代超群的直流无刷电机,3个全向轮,3个直流无刷电机驱动器(不过驱动器的速度反馈太慢了,所以我是直接将霍尔的接口在接到STM32 主控板上的,采用定时 器正交解码后计算的速度,由于电机转动一圈的霍尔跳变沿只有8个,所以,我们不能用时间片脉冲数的方式去计算速度,要通过,两次跳变的时间和移动的距离计算速度。在我的测试下,最终效 果还是不错的)
2>剩下的就是每一个小伙伴都要经历的就是,底盘的运动学正逆解,具体的推算过程有好多论文可以看,所以也就不多说的,两轮差分的比较简单,3轮全向的可以看我的上一篇博 文,http://www.cnblogs.com/zxouxuewei/p/5871470.html(强烈建 议,有些人写的论文公式都是错的,具体一定要自己推算一下,不然后面楚翔素的变换不正常的的情况就会让你特别痛苦)。
二。我的STM32部分代码分享给大家,希望大家不要见笑,不过底层的东西没有算法那么复杂,所以大家都可以做的,在此就贴出重要的部分代码:
1》我的3个轮子的对象描述。
typedef struct _kinematics_
{ float Target_Speed; //运动学正解后的速度 m/s int Moto_Speed_Output; //给定的转速 rpm/s 实际的电机要乘以减速比 36 float Input_Speed; //电机控制器输入捕获的实际速度 m/s unsigned char TIMCH1_CAPTURE_STA; //输入捕获状态 unsigned short TIMCH1_CAPTURE_VAL; //输入捕获值 float xyz_Target_value; //通过上位机或者手机遥控器给定的xyz方向上的速度 unsigned char D_Flag;}_struct_Pos_;_struct_Pos_ Kinematics_Positive1 = {0,0,0,0,0,0};
_struct_Pos_ Kinematics_Positive2 = {0,0,0,0,0,0};_struct_Pos_ Kinematics_Positive3 = {0,0,0,0,0,0};
#define VX_VALUE 0.5f //(0.5f)
#define VY_VALUE 0.72f //(sqrt(3)/2.0) #define L_value 0.219f // 0.2/角速度校准参数(0.915)#define RADIUS_value 0.386
#define REDUCTION_RATIO 36 //减速比/*********************************************** describetion: 底盘运动学正解函数* param: vx: x方向的速度* vy: y方向的速度* vz: z轴的速度* return: none* author: 周学伟* date : 2016-9-16*************************************************/void Speed_Moto_Control(float vx,float vy,float vz)
{ Kinematics_Positive1.Target_Speed = (-VX_VALUE*vy + VY_VALUE*vx + L_value*vz);//正解函数,具体推算过程请查看我的博客 Kinematics_Positive2.Target_Speed = (-VX_VALUE*vy - VY_VALUE*vx + L_value*vz); Kinematics_Positive3.Target_Speed = (vy + L_value*vz); Kinematics_Positive1.Moto_Speed_Output = -(Kinematics_Positive1.Target_Speed * REDUCTION_RATIO / RADIUS_value); //单位m/s Kinematics_Positive2.Moto_Speed_Output = -(Kinematics_Positive2.Target_Speed * REDUCTION_RATIO / RADIUS_value); Kinematics_Positive3.Moto_Speed_Output = -(Kinematics_Positive3.Target_Speed * REDUCTION_RATIO / RADIUS_value); Control_Moto_Speed(MOTO1,Kinematics_Positive1.Moto_Speed_Output); Control_Moto_Speed(MOTO2,Kinematics_Positive2.Moto_Speed_Output); Control_Moto_Speed(MOTO3,Kinematics_Positive3.Moto_Speed_Output);}逆解过程
movement_cul.upload_speed.Y_speed = -(2.0*Kinematics_Positive3.Input_Speed-Kinematics_Positive1.Input_Speed-Kinematics_Positive2.Input_Speed)/3.0;
movement_cul.upload_speed.X_speed = -(Kinematics_Positive1.Input_Speed - Kinematics_Positive2.Input_Speed)/1.442; movement_cul.upload_speed.Z_speed = -(Kinematics_Positive1.Input_Speed + Kinematics_Positive2.Input_Speed + Kinematics_Positive3.Input_Speed)/(L_value*3);2》做完速度的输入正解和逆解输出后,下面进入机器人的线速度和角速度校准,参考我的博客:http://www.cnblogs.com/zxouxuewei/p/5482302.html#3525543
3》下面我们准备导航所需要的包。
a.ros-indigo-gampping :我们不需要修改包内的东西,所以直接安装可执行文件就好了。
sudo apt-get install ros-indigo-slam-gmapping
b.安装雷达的驱动(我的是robopack),直接将提供的ros驱动包拷贝到工作空间中,
c.安装导航定位包,navigation 进入git:https://github.com/ros-planning/navigation/tree/indigo-devel,下载和自己ros版本匹配的包,解压到自己的工作空间中,
cd ~/catkin_wscatkin_make
indigo的navigation包会出现一个依赖问题,:Orocos-bfl not found while installing navigation stack ROS indigo + Ubuntu 14.04
解决方法:rosdep install --from-paths src --ignore-src --rosdistro indigo -y
d.由于导航包在/cmd_val下发布的移动数据加速度会过于不友好,所以我们需要对速度做平滑处理,其实就是控制加速,一般通过滤波即可实现,在此我们采用turtlebot的平滑包即可,
安装平滑包yocs_velocity_smoother,具体的平滑算法和输入切换请自己阅读源码。
apt-get install ros-indigo-yocs-velocity-smoother
三。1.所有的包准包好后,我们去准备启动所需的launch文件,首先是机器人地盘的启动文件ZHXWBOT_start.launch:
2.然后去准备建图包的启动文件gmapping.launch
3,导航包(move_base)和定位(amcl)的启动文件:zxbot_amcl.launch
move_base_amcl.launch:
tb_amcl.launch:
4.导航的配置参数如下:
base_local_planner_params.yaml
controller_frequency: 2.0recovery_behavior_enabled: falseclearing_rotation_allowed: falseTrajectoryPlannerROS: max_vel_x: 0.3 min_vel_x: 0.05 max_vel_y: 0.0 # zero for a differential drive robot min_vel_y: 0.0 min_in_place_vel_theta: 0.5 escape_vel: -0.1 acc_lim_x: 2.5 acc_lim_y: 0.0 # zero for a differential drive robot acc_lim_theta: 3.2 holonomic_robot: false yaw_goal_tolerance: 0.1 # about 6 degrees xy_goal_tolerance: 0.15 # 10 cm latch_xy_goal_tolerance: false pdist_scale: 0.8 gdist_scale: 0.6 meter_scoring: true heading_lookahead: 0.325 heading_scoring: false heading_scoring_timestep: 0.8 occdist_scale: 0.1 oscillation_reset_dist: 0.05 publish_cost_grid_pc: false prune_plan: true sim_time: 2.5 sim_granularity: 0.025 angular_sim_granularity: 0.025 vx_samples: 8 vy_samples: 0 # zero for a differential drive robot vtheta_samples: 20 dwa: true simple_attractor: false
costmap_common_params.yaml
obstacle_range: 2.5raytrace_range: 3.0robot_radius: 0.30inflation_radius: 0.15max_obstacle_height: 0.6min_obstacle_height: 0.0observation_sources: scanscan: {data_type: LaserScan, topic: /scan, marking: true, clearing: true, expected_update_rate: 0}
global_costmap_params.yaml
global_costmap: global_frame: /map robot_base_frame: /base_link update_frequency: 1.0 publish_frequency: 0 static_map: true rolling_window: false resolution: 0.01 transform_tolerance: 0.5 map_type: costmap
local_costmap_params.yaml
local_costmap: global_frame: /odom robot_base_frame: /base_link update_frequency: 1.0 publish_frequency: 1.0 static_map: false rolling_window: true width: 6.0 height: 6.0 resolution: 0.01 transform_tolerance: 0.5 map_type: costmap
四,准备好以上所有的启动文件和配置参数后,我们开始创建地图和导航,
1.创建地图:
roslaunch odom_tf_package ZHXWBOT_start.launch //启动地盘控制器roslaunch odom_tf_package gmapping.launch roscd odom_tf_package/maps/rosrun map_server map_saver -f mymap 然后会产生以下地图文件 mymap.pgm mymap.yaml
2.开始导航
roslaunch odom_tf_package ZHXWBOT_start.launch //启动地盘控制器 roslaunch odom_tf_package zxbot_amcl.launch map:=mymap.yaml rosrun rviz rviz -d `rospack find odom_tf_package`/nav_test.rviz
然后指定导航目标,开始自己慢慢玩吧,不过因为我的TF变换主要是里程计更新的,车体打滑或者地盘电机震荡都会积累误差,所以我们必须添加视觉里成计或者闭环检测。